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The problem of the uniform heating of a symmetrical three-layer plate with absolutely rigid outer layers, deformed solely due 
to thermal expansion, is solved. The generalized plane temperature problem is reduced to determining the stress-strain state, 
which is symmetrical with respect to two coordinates, of the inner layer (a soft filler) of transversely isotropic material using the 
equations of the mixed problem of elasticity theory. The layers are in ideal mutual contact. The conditions at the ends of the 
filler boundary layer (a thin contact layer) are not specified. On the remaining part of the ends of the filler the boundary conditions 
correspond to a free boundary. The problem has a finite smooth solution. The construct the exact solution a modification of 
Mathieu's method [1] is proposed, which consists of the fact that, in addition to ordinary Fourier series, solutions in polynomials 
are used. It is shown that the presence of these solutions in polynomials enables the convergence of the Fourier series to be 
accelerated considerably. © 2000 Elsevier Science Ltd. All rights reserved. 

The problem of elasticity theory for a rectangular layer was considered previously in [2], where the case of the 
first fundamental symmetrical problem for a layer is investigated in detail. 

1. M E T H O D  O F  S O L U T I O N  

The problem of the uniform heating of a symmetrical three-layer plate with absolutely rigid outer layers, 
undergoing thermal expansion, is solved. It is assumed that the inner layer (the filler) of transversely isotropic 
material has practically no effect on the outer layers, in view of its relatively low stiffness. The layers are in ideal 
mutual contact. 

The generalized plane temperature problem is reduced to determining the stress-strain state of the filler, which 
occupies a region in the form of a rectangular plate Ix'l <~ L, lY'I ~< H (2L is the length of the plate and 2H is 
the thickness) based on the equations of the mixed problem of elasticity theory. 

Generally speaking, the plate is bounded along the v axis, perpendicular to the (x, y) plane. 
For the deformation along the v axis we have 

eu = ~o T (1.1) 

where ~ is the coefficient of thermal expansion of the outer layers and T - const is the temperature increment. 
Henceforth we will use dimensionless Cartesian coordinates x, y, referred to L. Then, the side surface of the 

filler is described by the equationy = _+h, and its ends are described by the equationx = _1. 
We will write the relation between the stresses t~x, t~y, Oxy and the strains ex, ey, exy/2 of the transversely isotropic 

material for the case of generalized plane deformation, taking (1.1) into account, in the form 

E~ x = a x - v0t~y + E(I ÷ v)A~T + E'A.0T 

Eey := toffy - v0o ~ + E[~.y + v0(I - v)Ak]T, Eexy = ¥0a.~y (1.2) 

E~ k - ( k v ' )  2 kv" 
e =  _ _ v E ,  

i_v2 , v0-1_-- ~ ,  y0-l-Z--~-, ~,=--~-, aX=Xx-~.0 

Here we have assumed that the isotropy axis of the material is directed along they axis, Ex and Ey are the elasticity 
moduli along thex andy axes, G is the shear modulus, v and v '  are Poisson's ratios, and ~,x and k~ are the coefficients 
of thermal expansion along the x and y axes respectively. 

The stress t~ v is found from (1.1). 
We will write the equations of the anisotropic theory of elasticity, taking relations (1.1) and (1.2) into account, 

in the form 
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~4 F ~)4 F ~4 F ^ O2 F O2 F 
t o - - g - - - T + ~ + ~ - w = U ,  ox - o v = - ~  

ox ox oy oy - ~ y  2 ' . = ~ x  2 ' o xy 

The matching conditions of the layers have the form 

y = + h :  e x=~,OT, OWlOx=O 

where W is the dimensionless displacement (referred to L) along the y axis. 
The last relation in (1.4) reduces to the equality 

O2F 
~x~y" P = Y 0 - 2 v 0  (1.3) 

(1.4) 

y = + h :  !-~yX dx = (I.t + v0)Ox.v 

There are no loads on the ends of the inner layer, i.e. 

x = + l :  ox =Ox.v =0  

We will write the condition for there to be no external actions on the external layers in the form 

(1.5) 

I 
jo) .(x,~) dx = 0 (1.6) 
0 

where ~ e [--h, h] is a fixed coordinate along the y axis. 
In view of the symmetry of the problem with respect to y we will consider the region 0 ~< y ~< h. 
The solution of problem (1.1)-(1.6) presumably has a singularity (infinity) at the corner points 

(x = 4-1,y = h) of the inner layer. We will obtain the finite smooth stress-strain state of the layer, which is identical 
with the solution of system (1.1)-(1.6) everywhere, with the exception of a certain small region of the corner points 
(x = - 1 , y  = h). 

The latter problem in formulated as follows. 
We distinguish a thin layer h2 "~ h: h-h2 <~ y <~ h in the filler, where the surface y = h is the contact boundary 

with the rigid outer layer. 
In the thin layer h-h2 ~< y ~< h it is required to find an exact solution of Eq.(1.3), corresponding to the internal 

mixed temperature problem, i.e. its solution must satisfy only the boundary conditions on the side surfaces y = 
h--h 2 andy = h. This layer will be called the boundary layer. 

In the layer 0 ~<y ~< hi = h--h2 it is required to obtain an exact solution of the temperature problem, which enables 
the corresponding boundary conditions on the side surfacesy = 0,y = hi and at the endsx = 4-1, to be satisfied. 

In the boundary layer of the filler hi ~< y ~< h, we have 

O(2)(x, y) = B613x2rlh2 _ i.t(rlh2)31 + B4[x 2 - 1 - ~ t ( r l h  2 ) 2  ] _ 

- 8 ~ c o ( ~ )  2 + B3~/'~ + B2 + 

+ ! 

O(~,)(x,y) = _3B6x(rlh2 )2 _ 2B4xqh 2 + 

h i  ' h 2  ' 
i = 1 , 2  

(1.7) 

For the transversely isotropic material with pronounced anisotropy we can assume that Ix > 2'~]-m. 
In the layer 0 ~< y <~ hi the solution of the temperature problem will be sought in the form 
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0°>( x, YI' = M6(6x~z 2 - lah~z a) + N6[ x4 :-" I - O(hlZ) 4 ]+ M4[x 2 - 1 - I/(hlZ) 2 ] - 

-N4m(h~z) 2 + Ms + Y. cos(~mx) C~.,. ch (~ , . , z )×  - 
m : l  

- )". co.';(~nz) Di. . ch(~i.nx) 
n=l  I.i=1 

a ~ ) ( / , y )  : M6[(h,z) 2 - ( x  4 - 5 ) 1  ht-2]+ N6[6x2(htz) 2 - -~ (x  4 - 5 ) ]  + 

--~ + N 2 -  Z c o s ( ~ = )  C~,n, ch(~i..,Z) + 
m=l 

+~'. COS(/tnz. Di,nch(~i,nx)x 
n=l  "= 

+ £  sin(/tnz) Oi.nsh(~i.nx)x i 
n=|  "= 

_ Y • FUrl~i 

In formulae (1.7) and (1.8) Ci, ,,, Di,, (i = 1, 2), Rj, ,, ( j  = 1, 4), M2j, N2j ( . /= 1, 2, 3), Bj(j = 2, 3, 4, 5, 6) are 
constants, to be determined when solving the problem. 

If the upper limit on the summation sign is not indicated, it must be assumed to be equal to infinity. 
We will write the matching conditions for the boundary layer and the layer 0 ~< y ~ hi in the form 

~l)(x, hl)=G(x2)(x, hl), O~!)(X, hl)=G!~2.)(x, hl) 

otxl,!(x,hj) = <~.)(x,h~ ), OW(t) OW(2) (1.9) . . ~ ( x ,  h l ) = ~ ( x ,  hl) 

where W (2) is the dimensionless displacement of points of the boundary layer along the y axis. 
We reduce the la~a relation, taking the third relation of (1.9) into account, to the equation 

c~Gtt) = i °~0'(2) 
Y=hi : i --x dr ~ x  dr (1.10) 

0 ay 0 ay 

In view of the symmetry of the stresses with respect to the x coordinate, instead of (1.5) we have 

( i )  ( I )  
x= 1: o~ =0, O.ry =0  (1.11) 

Boundary conditions (1.4) on the surface y = h have the form 

ac~" . 
y=h: ~tx2)=7"°T' 0 i " ~ y  d 'X=(ILt+V0)~  ") (1.12) 

It follows from (1.8) that condition (1.6) is automatically satisfied. The constants written above are found from 
Eqs (1.9)-(1.12). The presence of particular solutions in the polynomials of the partial differential equations (1.3) 
enables the convergence of series (1.7) and (1.8) to be accelerated. 

We will briefly indicate a method of setting up an infinite system of algebraic equations for determining the 
required constants [1]. 

We use the following expansions of the function in Fourier series 
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ch(oti.nz) = 2 (Oti.n sho~i.n)z 2 + Y. ai.m eos(/tmz), i = 1,2 
m = 0  

l (  sh~i,n)x2 + Y. b'n,n, eOs(~mx), i = i , 2  cb(~i ,nx)='~ ~i.n i 
m = O  

2x 2 _ x4 = 7 + 48 5". ( -1)"  (/tin) "4 cos(nmx) 
15 m = l  

(1.13) 

x - x  3 = - 1 2  ~'. ( -1) 'Otm)-Ssin(gmx) 
n ' ! :  I 

The order of decay of the Fourier coefficients a/, ,,,, b/, m is (rim) ~. 
The first and second equations of (1.9) and Eq.(1.5) are expanded in basis functions ofx 2, 1, and cos (nmx). For 

example, as it applies to the first equation of (1.9), this means that, in this equation the hyperbolic functions and 
polynomial 2x 2 - x  4 are expanded in Fourier series using formulae (1.13). We then equate to zero the algebraic 
expressions with the factors cos (nmx) and x 2, and also the sum of the free terms of these Fourier expansions. 

Similarly, the first equation of (1.11) is expanded in basis functions ofz  2, 1 and cos (nnz). 
Another group of infinite algebraic equations is obtained when the third relation of (1.9), relation (1.10) and 

the second relation of (1.12) are expanded in basis functions x and sin (nmx). Here it is sufficient to expand the 
polynomial x - x  3 in a Fourier series. In a similar way we can expand the second condition of (1.11) in functions z 
and sin (nnz). 

The stress 6v is found from Eq. (1.1). 

2. T H E  R E S U L T S  O F  C A L C U L A T I O N S  

All the calculations of the dimensionless stresses (referred to E A~.T), presented in this section, were carried 
out for k = 3, y = 6, v = 0.2, v '  = 0.1, h = 0.2, h2 = h/6 and Lm = 120 and Ln = 15, where Lm and Ln are the 
numbers at which the Fourier series in x and y respectively are terminated. 

Figure 1 shows the distribution of the dimensionless stressespx (the continuous curves),py (the dash--dot curve), 
andp~, (the dashed curves) alongx in various sections of the layer. Curves 1, 2, 3 and 4 correspond to the sections 
y = O,y = hl/2,y = hi andy = h(hl = h--h2). 

The table shows values of the dimensionless stressespy × 103 at certain characteristic points of the inner layer. 
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3' x = 0 0.5 0.8 0.9 I 

0 -39 -33 -5 83 451 
hi/2 -34 -22 9 48 369 
h I -2) I0 77 56 -656 
h -15 25 114 IIH -1071) 

(I) (1) (1) (2) (2) (2) 
B e l o w  we  give t h e  :results o f  a ca lcu la t ion  o f  t hese  s t r e s s e s p j  ,p~ , p ~ ,  a n d p j  ,p~ , p ~ ,  o n  the  su r face  y = h i  

w h e r e  t h e s e  two so lu t ions  a r e  m a t c h e d  

p(x I) x 10 3 

p(2) x 10 4 y 

1 )  x 103 

(2) 3 p~ x l O  

x 0 0.5 0.8 0.9 

-I 170 -I 100 -930 -814 

-I 170 -I 1011 -93{) -4114 

-2O8 1if2 768 559 

-213 97 763 557 

0 -132 -353 -4116 

0 -131 -350 -481 

These results confirm the high degree of convergence of the Fourier series in solution (1.7), (1.8). 
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